Friday 17 November 2017

Moving Average Ring Buffer


Meta Trader 5 - Indicators Die klas vir die tekens van bewegende gemiddelde gebruik van die ring buffer - aanwyser vir Meta Trader 5 Die CMAOnRingBuffer klas is ontwerp vir berekening van Moving Gemiddeldes (bewegende gemiddelde) met behulp van die algoritme van die ring buffer. Lêer van die CMAOnRingBuffer. mqh klas moet in die IncOnRingBuffer gids wat nodig MQL5Include te word geplaas. Twee lêers met die gebruik van die klas van hierdie gids voorbeelde is aan die beskrywing. Lêer met die klas van die ring buffer moet ook in hierdie gids. Om die berekende data van die aanwyser van die ring buffer te kry, is moontlik as die gewone skikking. Byvoorbeeld: Neem asseblief kennis dat kruip in die ring buffer is dieselfde as in 'n tydreeks. Die aanwyser word bereken dat die TestMAOnArrayRB. mq5 lêer aan die hand van die prys tydreekse. Die MainOnArray () metode aansoek gedemonstreer die TestMAOnValueRB. mq5 lêer demonstates gebruik van die metode MainOnValue (). Eers die MA word bereken en trek. Dan aan die hand van die ring buffer van hierdie aanwyser, is nog 'n aanduiding bereken. Die resultaat van die werk van die TestMAOnArrayRB. mq5 met die grootte van die ring buffer van 256 elemente die gevolg van die werk van die TestMAOnValueRB. mq5 met die grootte van die ring buffer van 256 elementsMetaTrader 5 - Indicators die klas te MACD trek met behulp van die ring buffer - aanwyser vir Meta Trader 5 die CMACDOnRingBuffer klas is ontwerp vir die berekening van die tegniese aanwyser bewegende gemiddelde Konvergensie / divergensie (bewegende gemiddelde Konvergensie / divergensie MACD.) met behulp van die algoritme van die ring buffer. Lêer van die CMACDOnRingBuffer. mqh klas moet in die IncOnRingBuffer gids wat nodig MQL5Include te word geplaas. Twee lêers met die gebruik van die klas van hierdie gids voorbeelde is aan die beskrywing. Lêer met die klas van die ring buffer en die klas van bewegende gemiddelde ook moet wees in hierdie gids. Om die berekende data van die aanwyser van die ring buffer te kry, is moontlik as die gewone skikking. Byvoorbeeld: Neem asseblief kennis dat kruip in die ring buffer is dieselfde as in die tyd reeks. Die TestMACDOnArrayRB. mq5 lêer word bereken dat die aanwyser gebaseer op prys tydreekse. Die MainOnArray () metode aansoek gedemonstreer die TestMACDOnValueRB. mq5 lêer demonstreer die gebruik van die metode MainOnValue (). Eers die MACD aanwyser word bereken en getrek. Dan aan die hand van die ring buffer van hierdie aanwyser, nog een MACD aanwyser getrek word. Die resultaat van die werk van die TestMACDOnArrayRB. mq5 met die grootte van die ring buffer van 256 elemente die gevolg van die werk van die TestMACDOnValueRB. mq5 met die grootte van die ring buffer van 256 elementsI weet dit is haalbaar met hupstoot volgens: Maar Ek wil graag om te verhoed dat die gebruik van hupstoot. Ek het googled en nie gevind nie enige geskikte of leesbare voorbeelde. Eintlik wil ek die bewegende gemiddelde van 'n deurlopende stroom van 'n stroom van drywende punt getalle met behulp van die mees onlangse 1000 getalle as 'n data monster op te spoor. Wat is die maklikste manier om dit wat ek eksperimenteer met die gebruik van 'n omsendbrief skikking, eksponensiële bewegende gemiddelde en 'n meer eenvoudige bewegende gemiddelde en bevind dat die resultate van die omsendbrief array geskik my behoeftes beste te bereik. gevra 12 Junie 12 aan 04:38 As jou behoeftes is eenvoudig, kan jy net probeer om met behulp van 'n eksponensiële bewegende gemiddelde. Eenvoudig gestel, jy maak 'n akkumulator veranderlike, en as jou kode kyk na elke monster, die kode updates die akkumulator met die nuwe waarde. Jy kies 'n konstante alfa wat tussen 0 en 1, en bereken die volgende: Jy hoef net 'n waarde van alfa vind waar die effek van 'n gegewe voorbeeld net duur vir ongeveer 1000 monsters. Hmm, Ek is nie eintlik seker dit is geskik vir jou, noudat Ive het dit hier. Die probleem is dat 1000 is 'n mooi lang venster vir 'n eksponensiële bewegende gemiddelde Ek is nie seker daar is 'n alfa dat die gemiddelde van die afgelope 1000 getalle sou versprei, sonder onderloop in die drywende punt berekening. Maar as jy 'n kleiner gemiddelde, wou soos 30 nommers of so, dit is 'n baie maklike en vinnige manier om dit te doen. antwoord 12 Junie 12 by 04:44 1 op jou post. Die eksponensiële bewegende gemiddelde kan nie toelaat dat die alfa tot wisselvallig wees. So dit kan dit gebruik word om tyd basis gemiddeldes bereken (bv grepe per sekonde). As die tyd sedert die laaste akkumulator update is meer as 1 sekonde, jy laat Alpha wees 1.0. Anders, kan jy laat Alpha wees (usecs sedert verlede update / 1000000). â € jxh 12 Junie 12 aan 06:21 Eintlik wil ek die bewegende gemiddelde van 'n deurlopende stroom van 'n stroom van drywende punt getalle met behulp van die mees onlangse 1000 getalle as 'n data monster op te spoor. Let daarop dat die onderstaande updates die totale soos elemente soos bygevoeg / vervang, vermy duur O (N) traversal om die som te bereken - wat nodig is vir die gemiddelde - op aanvraag. Totaal gemaak 'n ander parameter van T te ondersteun bv met behulp van 'n lang lang wanneer altesaam 1000 lank s, 'n int vir char s, of 'n dubbel totale float s. Dit is 'n bietjie gebrekkig deurdat numsamples kon verby INTMAX - as jy omgee wat jy kan gebruik om 'n unsigned long lank. of gebruik 'n ekstra Bool data lid aan te teken wanneer die houer eerste gevul terwyl fietsry numsamples rondom die skikking (beste herdoop dan iets onskuldig soos POS). antwoord 12 Junie 12 aan 05:19 aanvaar word dat quotvoid operateur (T monster) quot is eintlik quotvoid operatorltlt (T monster) quot. â € oPless 8 Junie 14 by 11:52 oPless ahhh. goed raakgesien. eintlik het ek bedoel dat dit nietig operateur () (T monster), maar natuurlik jy kan gebruik wat ook al notasie jy graag. Sal los, te danke. â € Tony D 8 Junie 14 by 14: 27As ander genoem het, jy moet 'n IIR (oneindige impulsrespons) filter eerder as die FIR (eindige impulsrespons) filter jy is nou met behulp oorweeg. Daar is meer as dit, maar met die eerste oogopslag FIR filters word toegepas as eksplisiete konvolusie en IIR filters met vergelykings. Die besondere IIR filter Ek gebruik 'n baie in mikrobeheerders is 'n enkele paal laaglaatfilter. Dit is die digitale ekwivalent van 'n eenvoudige R-C analoog filter. Vir die meeste aansoeke, sal hierdie beter eienskappe as die boks filter wat jy gebruik het. Die meeste gebruike van 'n boks filter wat ek teëgekom het is 'n gevolg van iemand nie aandag in digitale seinverwerking klas, nie as gevolg van die behoefte van hul besondere eienskappe. As jy net wil 'n hoë frekwensies dat jy weet is geraas te verminder, 'n enkele paal laaglaatfilter is beter. Die beste manier om 'n digitaal te implementeer in 'n mikrobeheerder is gewoonlik: filt lt-- filt VF (NEW - filt) filt is 'n stukkie van die aanhoudende staat. Dit is die enigste aanhoudende veranderlike wat jy nodig het om hierdie filter te bereken. NUWE is die nuwe waarde wat die filter word opgedateer met hierdie iterasie. VF is die filter fraksie. wat pas 'n bekommernis vir die filter. Kyk na hierdie algoritme en sien dat vir 0 VF die filter is oneindig swaar sedert die uitset verander nooit. Vir 1 VF, sy werklik geen filter glad sedert die uitset volg net die insette. Nuttige waardes van die twee. Op klein stelsels haal jy VF om 1/2 N wees sodat die vermenigvuldig met VF bereik kan word as 'n reg verskuiwing deur N stukkies. Byvoorbeeld, kan VF wees 16/1 en die vermenigvuldig met VF dus 'n reg verskuiwing van 4 stukkies. Andersins hierdie filter moet net een aftrek en een byvoeging, hoewel die getalle gewoonlik nodig om wyer as die invoerwaarde (meer op numeriese presisie in 'n aparte afdeling hieronder) wees. Ek neem gewoonlik A / D lesings aansienlik vinniger as dit nodig is en pas twee van hierdie filters kaskade. Dit is die digitale ekwivalent van twee R-C filters in reeks, en verswak met 12 dB / oktaaf ​​bokant die rolloff frekwensie. Maar vir A / D lesings sy gewoonlik meer relevant om te kyk na die filter in die tydgebied deur die oorweging van sy stap reaksie. Dit vertel jou hoe vinnig jou stelsel 'n verandering sal sien wanneer die ding is wat jy meet veranderinge. Om die ontwerp van hierdie filters (wat net beteken pluk VF en besluit hoeveel van hulle waterval) te fasiliteer, ek gebruik my program FILTBITS. Jy gee die aantal verskuiwing stukkies vir elke VF in die kaskade reeks filters, en dit bere die stap reaksie en ander waardes. Eintlik het ek gewoonlik loop dit via my wrapper script PLOTFILT. Dit loop FILTBITS, wat 'n CSV-lêer maak, dan plotte die CSV. Byvoorbeeld, hier is die resultaat van PLOTFILT 4 4: Die twee parameters om PLOTFILT beteken daar twee filters kaskade van die hierbo beskryf tipe. Die waardes van 4 dui die aantal verskuiwing stukkies om die vermenigvuldig met VF besef. Die twee VF waardes is dus 1/16 in hierdie geval. Die rooi spoor is die eenheid stap reaksie, en is die belangrikste ding om te kyk na. Byvoorbeeld, hierdie vir jou vertel dat as die insette onmiddellik verander, die opbrengs van die gekombineerde filter sal vestig tot 90 van die nuwe waarde in 60 iterasies. As jy omgee vir 95 wegsterftyd dan moet jy wag sowat 73 iterasies, en vir 50 wegsterftyd slegs 26 iterasies. Die groen spoor wys jou die uitset van 'n enkele volle amplitude piek. Dit gee jou 'n idee van die ewekansige geraas onderdrukking. Dit lyk soos geen enkele voorbeeld meer as 'n 2.5 verandering in die uitset sal veroorsaak. Die blou spoor is 'n subjektiewe gevoel van wat hierdie filter doen met 'n wit geraas te gee. Dit is nie 'n streng toets, want daar is geen waarborg wat presies die inhoud was van die ewekansige getalle opgetel as die wit geraas insette vir hierdie lopie van PLOTFILT. Sy net om jou 'n rowwe gevoel van hoeveel dit sal platgedruk en hoe glad dit is. PLOTFILT, miskien FILTBITS, en baie van die ander nuttige dinge, veral vir PIC firmware ontwikkeling is beskikbaar in die PIC Ontwikkeling tools sagteware vrylating op my bladsy sagteware afgelaai. Bygevoeg oor numeriese presisie Ek sien uit die kommentaar en nou 'n nuwe antwoord dat daar belangstelling in die bespreking van die aantal bisse wat nodig is om hierdie filter te implementeer. Let daarop dat die vermenigvuldig met VF log 2 (VF) sal skep nuwe stukkies onder die binêre punt. Op klein stelsels, is VF gewoonlik gekies om 1/2 N wees sodat dit vermeerder eintlik besef deur 'n regte verskuiwing van N stukkies. Filt is dus gewoonlik 'n vaste punt heelgetal. Let daarop dat hierdie een van die wiskunde nie die geval te verander van die verwerkers oogpunt. Byvoorbeeld, as jy die filter 10 bis A / D lesings en N 4 (1/16 VF), dan moet jy 4 fraksie stukkies onder die 10 bis integriteit A / D lesings. Een meeste verwerkers, youd doen 16 bis integriteit bedrywighede weens die 10 bis A / D lesings. In hierdie geval is, kan jy nog doen presies dieselfde 16 bis integriteit opertions, maar begin met die A / D lesings links verskuif deur 4 stukkies. Die verwerker nie die geval is die verskil en nie die geval is weet moet. Doen die wiskunde op hele 16 bit heelgetalle werk of jy dit as '12.4 vaste punt of ware 16 bit heelgetalle (16.0 vaste punt) wees. In die algemeen, moet jy N stukkies elke filter paal voeg as jy dit nie wil geraas voeg as gevolg van die numeriese verteenwoordiging. In die voorbeeld hierbo, sal die tweede filter van twee moet 1044 18 stukkies inligting nie verloor het. In die praktyk op 'n 8 bit masjien wat youd gebruik 24 bit waardes beteken. Tegnies slegs die tweede paal van twee sou die wyer waarde nodig nie, maar vir firmware eenvoud Ek gebruik gewoonlik dieselfde verteenwoordiging, en sodoende dieselfde kode, vir alle pole van 'n filter. Gewoonlik skryf ek 'n subroutine of makro een filter paal aksie uit te voer, dan aansoek doen dat elke paal. Of 'n subroutine of makro hang af of siklusse of program geheue is belangriker in daardie spesifieke projek. In ieder geval, ek gebruik 'n paar kras staat om nuwe pas in die subroutine / makro wat filt updates, maar ook belastings wat in dieselfde kras staat NUWE in. Dit maak dit maklik om verskeie pale toe te pas, aangesien die opgedateer filt van een pool is die NUWE van die volgende een. Wanneer 'n subroutine, sy nuttig om 'n wyser punt om filt op die manier, wat net ná filt op die pad uit is opgedateer. Op dié manier die subroutine bedryf outomaties op agtereenvolgende filters in die geheue as meer as een keer genoem. Met 'n makro hoef jy nodig het 'n wyser omdat jy slaag in die adres te werk op elke iterasie. Kode Voorbeelde Hier is 'n voorbeeld van 'n makro soos hierbo beskryf vir 'n PIC 18: En hier is 'n soortgelyke makro vir 'n PIC 24 of dsPIC 30 of 33: Beide hierdie voorbeelde is geïmplementeer as makros met behulp van my PIC assembler voorverwerker. wat is meer in staat is as een van die ingeboude makro fasiliteite. clabacchio: Nog 'n probleem wat ek moes genoem is implementering firmware. Jy kan 'n enkele paal laaglaatfilter subroutine keer skryf, dan pas dit meer as een keer. Om die waarheid te gewoonlik skryf ek so 'n subroutine om 'n wyser te neem in die geheue om die filter staat, dan is dit bevorder die wyser sodat dit kan genoem word in die reeks maklik om 'n multi-paal filters te realiseer. â € Olin Lathrop 20 April 12 by 15:03 1. Baie dankie vir jou antwoorde - almal van hulle. Ek het besluit om hierdie IIR Filter gebruik, maar dit Filter is nie gebruik word as 'n Standard laagdeurlaatfilter, want ek moet Counter Waardes gemiddeld en vergelyk kan word om veranderinge in 'n sekere omvang te spoor. aangesien hierdie waardes van baie verskillende dimensies afhangende van Hardware wees Ek wou 'n gemiddelde te neem ten einde in staat te wees om outomaties te reageer op hierdie Hardware spesifieke veranderinge. â € sensslen 21 12 Mei om 12:06 As jy kan lewe met die beperking van 'n bevoegdheid van twee aantal items te Gemiddeld (dws 2,4,8,16,32 ens) dan is die kloof kan maklik en doeltreffend gedoen word op 'n lae prestasie mikro sonder toegewyde verdeel, want dit kan gedoen word as 'n bietjie skuif. Elke skof reg is 'n krag van twee bv: Die OP het gedink hy het twee probleme, verdeel in 'n PIC16 en geheue vir sy ring buffer. Hierdie antwoord dui daarop dat die skeidslyn is nie moeilik. Toegegee dit spreek nie die geheue probleem, maar die SE stelsel kan gedeeltelike antwoorde, en gebruikers kan iets uit elke antwoord neem vir hulself, of selfs wysig en kombineer other39s antwoorde. Aangesien sommige van die ander antwoorde vereis dat 'n kloof werking, hulle is soortgelyk onvolledig omdat hulle nie wys hoe om doeltreffend hierdie op 'n PIC16 bereik. â € Martin 20 April 12 by 13:01 Daar is 'n antwoord vir 'n ware bewegende gemiddelde filter (aka wagon filter) met minder geheue vereistes, as jy verstand downsampling hoef. Die sogenaamde kaskade integreerder-kam filter (CIC). Die idee is dat jy 'n integreerder wat jy verskille oor 'n tydperk, en die sleutel-geheue te bespaar, is dat deur downsampling, dont jy elke waarde van die integreerder stoor. Dit kan toegepas word met behulp van die volgende pseudokode: Jou effektiewe bewegende gemiddelde lengte is decimationFactorstatesize maar jy moet net om statesize monsters te hou. Dit is duidelik dat jy kan 'n beter prestasie kry as jou statesize en decimationFactor magte van 2 is, sodat die afdeling en restant operateurs kry vervang deur skofte en masker-ands. Naskrif: Ek stem saam met Olin dat jy altyd in ag moet neem eenvoudig IIR filters voor 'n bewegende gemiddelde filter. As jy dit nie nodig het die frekwensie-nulls van 'n wagon filter, sal 'n 1-paal of 2-paal laaglaatfilter waarskynlik werk boete. Aan die ander kant, as jy die filter vir die doeleindes van uitkap (neem 'n hoë-monster-koers insette en gemiddeld dit vir gebruik deur 'n lae-koers proses) dan 'n CIC filter kan wees net wat jy soek. (Veral as jy statesize1 kan gebruik en heeltemal te vermy die ringbuffer met net 'n enkele vorige integreerder waarde) Daar is 'n paar in-diepte analise van die wiskunde agter die gebruik van die eerste orde IIR filter wat Olin Lathrop reeds oor beskryf op die Digitale Seinverwerking stapel ruil (sluit baie mooi foto's.) die vergelyking vir hierdie IIR filter is: dit kan toegepas word met behulp van slegs heelgetalle en geen verdeeldheid onder die volgende kode (dalk 'n debugging nodig as ek tik uit die geheue.) hierdie filter by benadering 'n bewegende gemiddelde van die laaste K monsters deur die oprigting van die waarde van alfa tot 1 / K. Doen dit in die voorafgaande kode deur te definieer ing BITS om log2 (K), dit wil sê vir K 16 stel BITS tot 4, vir K 4 stel BITS tot 2, ens (Ill verifieer die kode hier gelys word sodra ek 'n verandering te kry en hierdie antwoord wysig indien nodig.) antwoord 23 Junie 12 aan 04:04 Hier is 'n enkel-paal laaglaatfilter (bewegende gemiddelde, met afsnyfrekwensie CutoffFrequency). Baie eenvoudig, baie vinnig, werk baie goed, en byna geen geheue oorhoofse. Let wel: Alle veranderlikes omvang buite die filter funksie, behalwe die geslaag in newInput Nota: Hierdie is 'n enkele stadium filter. Veelvuldige fases kan saam kaskade die skerpte van die filter te verhoog. As jy meer as een stadium gebruik, sal jy moet DecayFactor pas (soos verwys na die afsny-Frequency) te vergoed. En natuurlik al wat jy nodig het, is die twee lyne oral geplaas, hulle dont hul eie funksie het. Hierdie filter het wel 'n oprit-up tyd voor die bewegende gemiddelde verteenwoordig dié van die insetsein. As jy nodig het om dit oprit-up tyd omseil, kan jy net inisialiseer MovingAverage om die eerste waarde van newInput in plaas van 0, en hoop dat die eerste newInput isnt 'n uitskieter. (CutoffFrequency / SampleRate) het 'n reeks van tussen 0 en 0,5. DecayFactor is nie 'n waarde tussen 0 en 1, gewoonlik naby aan 1. Enkellopend-presisie dryf is goed genoeg vir die meeste dinge, ek verkies net dubbelspel. As jy nodig het om te hou met heelgetalle, kan jy sit DecayFactor en Amplitude Factor in fraksionele heelgetalle, waarin die teller gestoor as die heelgetal, en die deler is 'n heelgetal krag van 2 (sodat jy kan bietjie-verskuiwing na regs as die deler eerder as om te verdeel in die filter lus). Byvoorbeeld, as DecayFactor 0.99, en jy wil om heelgetalle gebruik, jy kan stel DecayFactor 0.99 65536 64881. En dan wanneer jy vermenigvuldig met DecayFactor in jou filter lus, net skuif die gevolg 16. Vir meer inligting oor hierdie, 'n uitstekende boek dis aanlyn, hoofstuk 19 op rekursiewe filters: www. dspguide / ch19.htm PS Vir die bewegende gemiddelde paradigma, 'n ander benadering tot die opstel van DecayFactor en AmplitudeFactor wat meer relevant is vir jou behoeftes kan wees, kan sê wat jy wil die vorige, sowat 6 items saam gemiddeld, doen dit strategies, youd 6 items en deel te voeg met 6, sodat jy kan die AmplitudeFactor stel om 1/6, en DecayFactor om (1.0 - AmplitudeFactor). antwoord 14 Mei 12 aan 22:55 Almal het deeglik kommentaar op die nut van IIR teen FIR, en op krag-van-twee-afdeling. ID net graag 'n paar implementering besonderhede gee. Die onderstaande werk goed op klein mikrobeheerders met geen FPU. Theres geen vermenigvuldiging, en as jy N hou 'n krag van twee, al die afdeling is enkel-siklus bietjie-verskuiwing. Basiese FIR ring buffer: hou 'n lopende buffer van die laaste N waardes, en 'n lopende som van al die waardes in die buffer. Elke keer as 'n nuwe monster kom in, trek die oudste waarde in die buffer van som, vervang dit met die nuwe monster, voeg die nuwe monster te som, en uitset som / N. Gewysig IIR ring buffer: hou 'n lopende totaal van die laaste N waardes. Elke keer as 'n nuwe monster kom in, som - som / N, voeg in die nuwe monster, en uitset som / N. antwoord 28 Augustus 13 aan 13:45 As I39m jy lees reg, you39re beskrywing van 'n eerste-orde IIR filtreer die waarde you39re trek isn39t die oudste waarde wat uitval, maar is in plaas van die gemiddelde van die vorige waardes. Eerste-orde IIR filters kan beslis nuttig wees, maar I39m nie seker wat jy bedoel wanneer jy suggereer dat die uitset is dieselfde vir alle periodiese seine. Op 'n 10kHz sample rate, voer 'n 100Hz vierkante golf in 'n 20-stadium boks filter sal 'n teken dat eenvormig styg vir 20 monsters oplewer, sit hoog vir 30, daal eenvormig vir 20 monsters, en sit laag vir 30. 'n eerste-orde IIR filter. â € supercat 28 Augustus 13 aan 15:31 sal 'n golf wat skerp begin oplewer stygende en geleidelik afplat naby (maar nie by) die maksimum insette, dan skerp begin val en geleidelik afplat naby (maar nie by) die insette minimum. Baie verskillende gedrag. â € supercat 28 Augustus 13 by 15:32 Een probleem is dat 'n eenvoudige bewegende gemiddelde mag of nie mag nuttig wees. Met 'n IIR filter, kan jy 'n lekker filter met relatief min calcs kry. Die FIR jy beskryf kan net gee jou 'n reghoek in die tyd - 'n sed in freq - en jy can39t die kant lobbe te bestuur. Dit kan die moeite werd om te gooi in 'n paar heelgetal vermeerder sodat dit 'n mooi simmetriese verstelbare FIR as jy kan spaar die klok bosluise wees. uitvoering maak Scott Seidman 29 Augustus 13 by 13:50 ScottSeidman: Nie nodig vir vermeerder as 'n mens het net elke stadium van die FIR óf uitset die gemiddelde van die insette op daardie stadium en sy vorige gestoor waarde, en dan slaan die insette (indien 'n mens die numeriese reeks, kan 'n mens die som eerder as die gemiddelde gebruik). Of that39s beter as 'n boks filter hang af van die aansoek (die stap reaksie van 'n boks filter met 'n totale vertraging van 1ms, byvoorbeeld, sal 'n nare d2 het / dt piek wanneer die insette verander, en weer 1ms later, maar sal moet die minimum moontlike d / dt vir 'n filter met 'n totale 1ms vertraging). â € supercat 29 Augustus 13 aan 15:25 Soos mikeselectricstuff gesê, as jy regtig nodig het om jou geheue behoeftes te verminder, en jy dit nie omgee jou impulsrespons om 'n eksponensiële (in plaas van 'n vierkantige pols), sou ek gaan vir 'n eksponensiële bewegende gemiddelde filter . Ek gebruik dit op groot skaal. Met hierdie tipe filter, hoef jy geen buffer nodig het. Jy hoef nie te N afgelope monsters te stoor. Slegs een. So, kry jou geheue vereistes kap met 'n faktor van N. Ook, moenie jy nodig het 'n afdeling vir daardie. Slegs vermenigvuldiging. As jy toegang tot swaai-punt rekenkundige het, gebruik swaai-punt vermenigvuldiging. Anders, doen heelgetal vermenigvuldiging en skuif na regs. Ons is egter in 2012, en ek sal u aanbeveel om opstellers (en MCUs) wat u toelaat om te werk met swaai-punt getalle gebruik. Behalwe dat meer geheue doeltreffend en vinniger (jy hoef nie te items in enige omsendbrief buffer werk), sou ek sê dit is ook meer natuurlike. omdat 'n eksponensiële impulsrespons wedstryde beter soos die natuur optree, in die meeste gevalle. antwoord 20 April 12 aan 09:59 Een probleem met die IIR filter as byna aangeraak deur Olin en supercat maar blykbaar geïgnoreer deur ander is dat die afronding af stel sommige onakkuraatheid (en potensieel vooroordeel / afkorting). veronderstelling dat N is 'n krag van twee, en net heelgetal rekenkunde gebruik word, die verskuiwing reg nie stelselmatig uit te skakel die LSBs van die nuwe monster. Dit beteken dat hoe lank die reeks ooit kon wees, die gemiddelde sal nooit neem diegene in ag neem. Byvoorbeeld, veronderstel 'n stadig afneem reeks (8,8,8. 8,7,7,7. 7,6,6,) en neem die gemiddelde is inderdaad 8 aan die begin. Die vuis 7 monster sal die gemiddelde bring tot 7, ongeag die filter sterkte. Net vir 'n monster. Dieselfde storie vir 6, ens Nou dink aan die teenoorgestelde. die reeks styg. Die gemiddelde sal bly op 7 ewig, totdat die monster is groot genoeg om dit te verander. Natuurlik, kan jy reg vir die vooroordeel deur die byvoeging van 1 / 2N / 2, maar dit sal nie regtig los die akkuraatheid probleem. In daardie geval die dalende reeks sal vir ewig bly, 8 tot en met die monster is 8-1 / 2 (N / 2). Vir N4 byvoorbeeld 'n monster bo nul sal die gemiddelde onveranderd te hou. Ek glo dat 'n oplossing vir dit sou impliseer 'n akkumulator van die verlore LSBs hou. Maar ek didnt maak dit ver genoeg om kode gereed te hê, en ek is nie seker of dit sal nie skade aan die IIR krag in sommige ander gevalle van 'n reeks (byvoorbeeld of 7,9,7,9 sal gemiddeld tot 8 dan). Olin, jou twee-stadium waterval ook sou 'n verduideliking nodig. Bedoel jy hou twee gemiddelde waardes met die uitslag van die eerste gevoer in die tweede plek in elke iterasie. Wat is die voordeel van hierdie ring buffers en bewegende gemiddeldes 11 Lang tyd geen post, so siek net terloops sluip in hoe om 'n eenvoudige ring buffer in JavaScript te skep. As 'n bonus, sal ons die ring buffer klas gebruik om 'n eenvoudige bewegende gemiddelde implementeer. Kom ons begin deur te kyk na die ongelooflike visualisering van die Hoe dit deel van die Wikipedia bladsy werk. Soos jy kan sien, 'n ring buffer is 'n omsendbrief vorm van 'n skikking. In die begin is dit leeg, dan stoot jy waardes totdat jy die einde te bereik. Sodra dit is vol en jy 'n druk uit te voer, moet jy begin vervang van die oudste data. Let ook op dat daar twee wysers die lees wyser (of hoof) is as gevolg van die druk bedrywighede en die skryf wyser (of stert) is na aanleiding van die pop bedrywighede. Dis die inligting moet ons begin met die implementering dit Niks spesiale hier. Ek verkies Array om dit generiese maak, maar jy kan enigiets gebruik (ek dink die mees doeltreffende sou Uint8Array. Of miskien buffer). Ek het ook bygevoeg 'n this. size om die ring buffers grootte, wat sal handig te pas kom wanneer ons die implementering van die bewegende gemiddelde op te spoor. Op die funksie druk (): Ons inkrementeer die hoof wyser totdat ons die kapasiteit bereik, dan begin ons weer oor. Dieselfde met die grootte, maar sodra ons bereik die kapasiteit ons stop dit verander. Voeg die funksie Pop (): Dit is eintlik byna dieselfde as druk (). tensy ons verminder die grootte en terugkeer data. Ons het nou 'n ten volle werk ring buffer, maar geen manier om doeltreffend Itereer deur dit. Kom ons maak gebruik van 'n paar Symbol. iterator magie 'n standaard iterator voeg by ons klas. Kom ons probeer dit en kyk of dit werk. Kan jy die resultaat te visualiseer voordat jy die kode Noudat ons die ring buffer, implementering van 'n eenvoudige bewegende gemiddelde is triviaal. Dis al, mense. Tot volgende keer.

No comments:

Post a Comment